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The flagellar stator unit is an oligomeric complex of two membrane proteins

(MotA5B2) that powers bi-directional rotation of the bacterial flagellum. Harnessing

the ion motive force across the cytoplasmic membrane, the stator unit operates as

aminiature rotarymotor itself to provide torque for rotation of the flagellum. Recent

cryo-electron microscopic (cryo-EM) structures of the stator unit provided novel

insights into its assembly, function, and subunit stoichiometry, revealing the ion

flux pathway and the torque generation mechanism. Furthermore, in situ cryo-

electron tomography (cryo-ET) studies revealed unprecedented details of the

interactions between stator unit and rotor. In this review, we summarize recent

advances in our understanding of the structure and function of the flagellar stator

unit, torque generation, and directional switching of the motor.

The bacterial flagellum and its rotary motor

Many bacteria, including Escherichia coli, Salmonella, and Bacillus spp., use flagella (see
Glossary) to move through liquid environments and across surfaces. The flagellum is a supramo-
lecular nanomachine that protrudes from the cell envelope and measures ~5–20 μm in length. It
is able to rotate in both clockwise (CW) and counterclockwise (CCW) directions to propel
the bacterial cell body in different living environments [1,2]. Rotational switching between these
two modes is regulated by chemotactic signaling, which is a rapid process that responds to
environmental stimuli and biases movement of the cell toward attractants and away from
repellents. Flagella-mediated chemotaxis further enables pathogenic bacteria to move toward
cells to establish in vivo niches. [3,4]. Thus, flagella have fundamental roles in bacterial locomotion
and virulence [5].

The flagellum comprises more than 25 kinds of building blocks, which assemble in a highly
ordered manner. The flagellar structure can be divided into three morphologically distinguishable
parts: a cell envelope-spanningmotor (basal body), a universal joint (hook), and a long, thin helical
filament [6,7] (Figure 1). Among them, the most intricate part is the basal body, containing the
components responsible for assembly of the flagellum [the flagellar-specific type-III secretion

system (T3SS) [8]], torque generation (the stator units [9]), and rotational switching (binding of
the response regulator CheY-P to the cytoplasmic C-ring [10,11]). Cryo-ET studies of the
motor from different bacterial species show the variation of its structure, while the core compo-
nents are conserved [7,12,13]. For example, in the Gram-negative bacteria Salmonella and
E. coli, the flagellar motor contains four ring-like structures based on their distributions relative
to the cell surface layers [lipopolysaccharide (L-)ring, peptidoglycan (P-)ring, inner membrane/
supramembrane (MS-)ring, and cytoplasmic (C-)ring] surrounding a central rigid rod [14–17].
Additional ring-like structures, H- and T-rings, located in the periplasmic space, have also been
observed in Vibrio spp [18]. It is believed that assembly of the flagellar basal body initiates with
formation of the core secretion pore FliPQR [19,20] of the flagellar-specific T3SS [21,22]. This
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is followed by subsequent assembly of the switch protein FlhB [23] and nine copies of the
transmembrane protein FlhA [24], which is thought to couple energy derived from the proton-
motive force to substrate protein secretion [25,26]. The MS-ring, which comprises multiple
copies of the transmembrane protein FliF [17,27], forms a structural scaffold around the flagellar
export apparatus and coordinates the formation of the C-ring, which engages with the stator
units to generate torque [28].

The stator unit is a complex of two membrane proteins sharing the same operon on the genomic
locus, with a molecular mass of ~200 kDa [29]. Located at the inner membrane, the stator unit is
responsible for harvesting the cross-membrane electrochemical gradient of ions, most com-
monly protons or sodium ions (e.g., MotA/MotB is a H+-dependent stator unit; PomA/PomB is
a Na+-dependent stator unit), while, in some cases, the stator unit also uses potassium and
rubidium ions [30]. Some bacterial species contain only one type of stator unit, whereas others
have multiple types [31]. For example, Vibrio alginolyticus contains only sodium-driven stator
units and Campylobacter jejuni contains only proton-driven stator units, while Bacillus subtilis

has both types [32]. In all stator units, one component is anchored to the bacterial cell wall,
while the other component engages with the C-ring of the flagellar motor, thereby enabling torque
generation.

The stator unit is considered as a motor itself: it converts the electrochemical potential energy
from the ion motive force into mechanical torque. Upon recruitment to the basal body and cell
wall binding, the stator units undergo a conformational change from an inactive/plugged state
into an activated/unplugged state [33]. In the unplugged state, the flux of ions through the stator
unit channel energizes the rotation of the rotor. Cryo-EM structures of stator units from different
bacterial species have recently been determined to high resolution and their interactions with
their rotors have been explored by cryo-tomographic studies [34–38]. Here, we focus on recent
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Figure 1. The architecture of
the flagellum of Gram-negative
bacteria. The left side corresponds to
the motor with the H+-dependent
stator unit (MotA/MotB) and the
right side shows the motor with the
Na+-dependent stator unit (PomA/
PomB). The flagellar motor of marine
Vibrio spp contains two additional
ring structures: the T-ring and H-ring.
Abbreviations: C-ring, cytoplasmic
ring; IM, inner membrane; L-ring,
lipopolysaccharide ring; MS-ring, inner
membrane/supramembrane ring; OM,
outer membrane; P-ring, peptidoglycan
ring; PG, peptidoglycan.
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developments in the understanding of the flagellar stator unit, the biological mechanism of its
torque generation, and the rotational switching of the motor.

Structure of the stator unit

The C-terminal part of MotB or PomB [known as the peptidoglycan-binding (PGB) domain] allows
binding of the stator unit to the peptidoglycan layer of the bacterial cell wall. The PGB domain dis-
plays a high degree of similarity to the C-terminal domain of OmpA, a flexible clamp responsible
for bacterial cell wall binding [39]. High-resolution structures of isolated MotB PGB obtained
through X-ray crystallography provide a wealth of information for a mechanistic understanding
of its self-dimerization and its interaction with peptidoglycan components [40–42]. The intrinsic
dynamic properties of the stator unit probably precluded crystallization of the full complex. The
first available 3D structure of a stator unit was that of PomAB from V. alginolyticus, reconstructed
by single-particle analysis from negatively stained samples, with a resolution limited to ~20 Å [43].
The map revealed the overall shape of the stator unit, suggesting that two PomBmolecules were
surrounded by four PomAmonomers, consistent with previous studies establishing the presence
of at least two PomB and an apparent PomA:PomB ratio of ~2:1 [44,45]. This model was widely
used as template for molecular dynamic simulations of ion transportation and amino acid point
mutagenesis for functional studies [43,46–48]. However, due to the low resolution of the struc-
ture, it was not possible to accurately interpret the stator unit stoichiometry and channel
formation.

With the resolution revolution of single-particle cryo-EM, it became possible to determine high-
resolution structures of membrane proteins without crystallization and with a smaller quantity of
protein sample [49,50]. Both the relatively small molecular mass of the flagellar stator units as
well as the preferred orientation that these particles adopt on EM grids have hindered their struc-
tural determination. By optimizing protein purification procedures and cryo-EM grid preparation,
atomic models of the proton-driven MotAB stator unit family from three bacterial species were
constructed [34,35]. These studies have contributed detailed structural information about the
subunit assembly and proposed a mechanism for stator unit activation and torque generation.

The structures revealed that the stator unit adopts a MotA5:MotB2 arrangement. The 5:2
stoichiometry was also reinforced by low-resolution maps of two sodium-driven stator units,
V. alginolyticus PomAB and Vibrio mimicus PomAB, albeit lacking the atomic coordinates
[34,35]. These data suggest a conserved arrangement across all types of flagellar stator unit: a
pentamer of MotA peripherally surrounding a dimer of MotB (Figure 2A,C). Of note, all three
models lack the MotB C-terminal PGB domain, reflecting the highly flexible locations of MotB
PGB with respect to the core structure, at least in a detergent environment [34,35]. Moreover,
the structures suggest that the stator unit is in an autoinhibited state (discussed later). Other
evolutionarily related bacterial complexes, which also harness the transmembrane proton motive
force, share the same 5:2 stoichiometry [51,52]. These include ExbB5D2, which powers the
ExbB–ExbD–TonB complex, responsible for transportation of nutrients entering into the periplas-
mic space [53], and GldL5M2, which powers the gliding motility/type 9 protein secretion system
motors in members of the phylum Bacteroidetes [54].

Among the different stator units studied, the structure of MotAB has been determined from
C. jejuni (CjMotAB), a common foodborne pathogenic bacterium [55], to a resolution of 3.1 Å
(with a local resolution as high as 2.5 Å) [34]. Briefly, the transmembrane segments (TM) of
MotA fold into α helices, with the third and fourth segments (TM3 and TM4) lining the dimerized
MotB TM helices. MotA TM1 and TM2 establish extensive hydrophobic interactions with the
lipid bilayer. Two amphipathic helices of MotA, the cytoplasmic interface helix (CI) and the

Trends in Biochemical Sciences
OPEN ACCESS

162 Trends in Biochemical Sciences, February 2022, Vol. 47, No. 2

Glossary
Bis-(3′-5′)-cyclic dimeric guanosine

monophosphate (c-di-GMP): also
called cyclic diguanylate or cyclic-di-
GMP; a global bacterial second
messenger molecule involved in signal
transduction of a range of cellular
processes.
Chemotactic signaling: rapid process
that responds to environmental stimuli
and biases movement of the cell toward
nutrients and away from repellents.
CheY-P: a phosphorylated form of a
response regulator protein that can bind
to the flagellar motor to alter the
rotational direction of the motor.
Clockwise (CW) and

counterclockwise (CCW)

directions: flagella are able to rotate in
both CW (viewed from filament tomotor)
and CCW directions to propel the
bacterial cell body in different liquid
environments. Cells of peritrichously
flagellated Escherichia coli and
Salmonellamove forward when their
flagella rotate CCW (when a flagellar
bundle forms) and tumble when the
rotation direction switches to CW (which
causes the flagellar bundle to fall apart).
Flagellum: proteinaceous motility
device embedded in the cell envelope of
many bacteria. The bacterial flagellum
enables bacteria to swim in liquid
environments or swarm on solid
surfaces.
Periplasmic flagella: some bacteria,
such as Spirochetes, have flagella that
reside within the periplasmic space.
Peritrichously flagellated

bacterium: a bacterial cell that has
several flagella distributed randomly on
its cell body.
Single polar flagellum: bacterium that
has only one flagellum that attaches to
its cell pole.
Transmode: indicates that the two
plugmotifs from twoMotB chains are on
the opposing sides of the two MotB
transmembrane helices.
Type-III secretion system (T3SS): a
protein secretion system found at the
base of the bacterial flagellum and of the
needle-like injectisome. The injectisome
is amajor virulence factor ofmanyGram-
negative bacteria and responsible for
injection of proteins directly from the
bacterial cell into the eukaryotic host cell.



periplasmic interface helix (PI), perpendicular to the TM3 and TM4, adopt a parallel orientation
with reference to the membrane, clearly defining the membrane boundary of the stator unit
(Figure 2A,B); this is consistent with the structures of the MotAB stator units from B. subtilis

and Clostridium sporogenes [34,35]. At the periplasmic interface, a short helix just after the TM
of MotB, designated as a plug motif, wedges in between the top of two MotA subunits, revealing
the autoinhibition mechanism of the stator unit [34] (Figure 2B). The plug motifs of the two MotB
chains are organized in a trans mode in the stator unit, consistent with earlier functional
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Figure 2. Available atomic structures of flagellar stator units. (A) Proton-driven MotAB from the Gram-negative bacterium Campylobacter jejuni (CjMotAB) [Protein
Data Bank (PDB) ID: 6YKM]. Subunits are present in a MotA5:MotB2 stoichiometry. MotA subunits (purple, orange, yellow, green, and red) surround MotB subunits (black
and gray). MotB plug motifs are shown in the periplasmic space. (B) Topology organization and secondary structural elements of CjMotA (purple) and CjMotB (black)
subunits. The OmpA-like MotB peptidoglycan-binding domain (PGB) is indicated as a gray ellipse. The strictly conserved residues among stator units from different
bacterial species are shown as yellow ovals, with red text for conserved residues belonging to MotB and black for MotA. (C) Left: proton-driven MotAB from the Gram-
positive bacterium Clostridium sporogenes (PDB ID: 6YSE). Right: proton-driven MotAB from the Gram-positive bacterium Bacillus subtilis (PDB ID: 6YSL). Structures
are colored as in (A). In this case, the plug motifs are not built in both original models due to the local map quality. Abbreviations: CI, cytoplasmic interface; CP,
cytoplasm; H, helix; IM, inner membrane; PI, periplasmic interface; PG, peptidoglycan; PP, periplasm; TM, transmembrane.
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experiments [33] (Figure 3A). The density around the first ten residues of the MotB N terminus is
less defined, preventing model building, suggesting that this region adopts different conformations
[34,35]. Additionally, the unplugged structure ofCjMotAB (MotB 41–60) mimicking the active state
of the stator unit, and the unplugged and protonated structure of CjMotAB (MotB 41–60, D22N)

TrendsTrends inin BiochemicalBiochemical Sciences Sciences

Figure 3. Activation and rotation mechanisms of the Campylobacter jejuni (Cj)MotAB stator unit. (A) Left: top view of CjMotAB stator unit in its autoinhibited
state with MotB shown as a cartoon representation and MotA shown as a surface representation [Protein Data Bank (PDB) ID: 6YKM]. Right: organization of MotB
transmembrane helix and plug motif. MotB plug motifs function in trans mode. Colored as in Figure 2A in the main text. (B) Left: top view of CjMotAB stator unit in its
unplugged state (PDB ID: 6YKP). Right: activation of the stator unit requires the dimerized MotB PGB to bind to the peptidoglycan (PG) layer, unplugging the channel.
(C) Multiple-sequence alignment of CjMotB transmembrane (TM) helix and plug motif with different proton- and sodium-dependent homologs to highlight the
conserved residues. (D) View from within the membrane showing the potential proton channel of the CjMotAB stator unit in the unplugged conformation.
(E) Mechanistic model for proton motive force-powered rotation of MotA around MotB. D22 from MotB engaged with MotA is highlighted with pink halos. Left: MotB
chain 1 D22 [D22(1)] is coupled with a proton or hydronium and MotB chain 2 D22 [D22(2)] receives a proton or hydronium from the periplasmic (PP) side. Middle:
proton or hydronium binding neutralizes MotB D22(2) charge. Right: MotA rotates 36° clockwise (CW) by a power stroke. MotB D22(1) releases the proton or
hydronium into the cytoplasm (CP) and MotB D22(2) (charge is neutralized) gets in a position similar to the MotB D22(1) in the left panel.
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were characterized to a high resolution [34] (Figure 3B). Given that the architecture and the
sequence of the stator units are so well conserved, these high-resolution structures offer a great
opportunity to understand how ions flow through the stator unit and induce rotation of MotA
around MotB.

Stator unit activation, ion flux pathway, and rotation

One distinctive, universally conserved feature in MotB is the plug motif. Early functional experi-
ments showed that overexpression of MotAB from E. coli did not impair cell growth [56]. By
contrast, in-frame deletion of this plug motif leads to proton leakage and cell growth arrest,
showing that activation of theMotAB channel is controlled by the plugmotif [33,57]. As noted ear-
lier, the structure of the unplugged state of CjMotAB was obtained by deleting the residues cor-
responding to the plug motif [34]. Interestingly, it was observed that the unpluggedCjMotAB was
toxic to E. coli cells when overexpressed [34].

This unplugged structure unveils a potential proton channel that links the periplasmic space to the
conserved acidic residue D22 on TM helix of MotB chain 2 (Figure 3D) (numbering to reflect the
specific local environment of each segment in the asymmetric complex), and to the inside of
MotA cytoplasmic domain, where many negatively charged residues are found [34]. Inspection
of the channel-lining residues reveals the differential conservation between proton and sodium-
dependent stator units, which have previously been shown to be critical for ion transport
(Figure 3C) [58–60]. In addition, this channel is shielded by the conserved hydrophobic residue
F186 of TM4 of MotA, the side chain of which adopts two different conformations [34].
Consequently, this residue is likely to be a key point controlling the ion flux, ensuring efficient
ion motive force utilization. D22 on the TM of CjMotB chain 1 is buried in a hydrophobic
environment; therefore, it is more likely to accommodate a protonated (or hydronium-interacting)
D22 compared with the MotB chain 2 [34]. Supporting this model, the proton channel is not
observed in any of the three plugged stator units [34,35].

The comparison between plugged and unplugged MotAB structures reveals no major conforma-
tional differences, which argues against the idea that a large conformational change within MotA,
without rotation of MotA around MotB, causes torque generation, which was the previous
paradigm [61]. Rather, it strongly suggests a rotational mechanism [34,35]. In the active state
of the stator unit, the PGB domains of the two MotB chains are dimerized and anchored to the
peptidoglycan layer; therefore, only MotA can rotate around MotB [35] (Figure 3B). Based on
this structural analysis [34], it was hypothesized that MotB chain 1 D22 is bound to a proton or
hydronium ion and engaged toMotA. It is ready to perform a power stroke, but rotation is blocked
because the negatively charged MotB chain 2 D22 cannot move across the hydrophobic surface
of the stator unit. Then, MotB chain 2 D22 receives a proton or a hydronium ion from the periplas-
mic side, now allowing MotA to rotate. This is because this neutralized, disengaged MotB chain 2
D22 can now enter a hydrophobic region, such as the MotB chain 1 D22, where it must be
deprotonated to release the bound proton or hydronium into the cytoplasm. Indeed, structural
comparison between the unplugged and D22N unplugged mutants revealed how D22 changes
from pointing to the periplasm in the deprotonated state to pointing down toward the cytoplasmic
interface when protonated [34]. After MotB chain 1 D22 has released its proton, MotB chains 1
and 2 have now functionally switched roles and the cycle can start again. Consequently, each
proton transport event triggers MotA rotation around MotB by 36° in a clockwise direction
(Figure 3E). This is reminiscent of the mechanism that an inchworm uses for locomotion (or to
the working mechanism of human-made inchworm motors) [34,62]. The cytoplasmic lumen of
MotA could serve as an electrostatic complementarity reservoir, attracting and housing the
incoming ions. Collectively, the structural features of the stator unit in both plugged and unplugged
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states explain how MotA rotates around MotB upon stator unit activation and ion motive force
dispersion.

Another alternative, which still implies a rotational model, has been proposed by Deme et al., in
which MotA would also rotate 36° around MotB for every ion-binding/release event, but in
which only one of the two MotB chains would be protonated simultaneously [35]. This model is
similar to that suggested by Santiveri et al., but the difference is that, in the latter, both MotB
chains would need to be protonated simultaneously to trigger the power stroke [34]. We suggest
that this model is the most likely because the hydrophobic MotA interior would likely only be able
to rotate around MotB when the latter is charge neutralized.

Additionally, Deme et al. proposed a second rotational model in which MotA rotates 36° around
MotB and then resets to the original position [35]. This alternative is less likely because this mech-
anism requires that the stator unit detaches from the rotor, and this is not in line with the observed
high duty ratio of the motor [63]. By contrast, the implied handover mechanisms in the unidirec-
tional rotational models would allow the rotor and stator to remain firmly associated all the time
and are consistent with a high duty ratio.

An atomic model of a sodium-driven stator unit is still lacking; therefore, it remains unclear how
the stator unit recognizes the coupling sodium ion. The two types of stator unit share a similar
architecture, and the universally conserved aspartate residue involved in ion binding is located
at a similar level of the MotB TM helix [64]. A recent study with Bacillus clausii, an alkaliphilic
bacterium, showed that its stator unit can use both Na+ and H+ as coupling ions, depending
on the environmental pH [65]. Different triple mutations of residues at the periplasmic side of
MotB TM switched the dual-functional stator unit into either a proton-driven or sodium-driven
one, indicating that ion specificity is located along the channel at the region preceding the critically
conserved aspartate [65]. Introduction of sodium-driven PomAB into E. coli through CRISPR/
Cas-mediated genome engineering showed that, when sodium is lacking, PomAB can spontane-
ously mutate, which allows it to use the proton gradient as driving force [66]. Thus, additional
studies are needed to fully understand themolecular basis underlying the ion selectivity mechanism
of the stator unit.

Interaction between the stator unit and rotor

The C-ring forms a cup-like structure located at the cytoplasmic base of the flagellar rotor, and is
essential for torque generation and flagellar rotation [13,67]. Cryo-ET studies of the flagellar motor
revealed the overall architecture and general shape of the C-ring [15]. For example, in E. coli and
Salmonella, the C-comprises a complex of three proteins: FliG, FliM, and FliN (Figure 4A). Other
bacterial species, such as B. subtilis, Thermotoga maritima, and Listeria monocytogenes,
additionally contain FliY as a supplementary subunit to, or instead of, FliN [68–70].

Several crystal structures of different C-ring proteins and subcomplexes, as well as crosslinking
experiments, provide important information regarding protein–protein interactions and C-ring
assembly. X-ray structures of isolated domains of FliG [71,72] and the full-length protein from
the thermophile Aquifex aeolicus have been determined [73]. FliG comprises three domains: an
N-terminal domain (FliGN), responsible for binding to the MS-ring; a C-terminal domain (FliGC),
containing a torque helix that interacts with the stator units [73]; and a middle domain (FliGM),
providing the binding site for FliM. The crystal structure of the cytoplasmic domain of FliF (FliFC)
in complex with FliGN from Helicobacter pylori revealed the assembling interface between the
C-ring and MS ring [74]. This interaction allows attachment of the C-ring close to the inner
membrane and is important for its assembly [74]. Recent cryo-EM analysis reported high-resolution
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structures of the MS-ring from Salmonella typhimurium, both from purified FliF and from the native
motor, unveiling that the MS-ring adopts a 34-fold symmetry [17,27,75]. Furthermore, directed
point mutagenesis and crosslinking experiments showed a 1:1 stoichiometric interaction between
FliG and FliF, indicating that the C-ring also contains 34 FliG protomers [76,77]. FliM also comprises
three domains [78]. The N-terminal domain of FliM (FliMN) contains the binding site for the
phosphorylated chemotaxis signaling protein CheY (CheY-P). The middle domain of FliM (FliMM)
binds to FliGM [79]. The C-terminal domain (FliMC) dimerizes with FliN [80], which locates at the
bottom of the C-ring.

From the combined insights of the full-length structure of FliG and tomographic studies, it was
inferred that FliG multimers undergo a dramatic conformational change during the flagellar
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Figure 4. Interactions between stator unit and rotor. (A) A section from a tomogram of a Borrelia burgdorferi flagellar motor in situ (EMD-21886) showing the direct
interactions between the stator unit and the C-ring. (B) The C-ring undergoes a conformational change and interacts with the different sides of the stator unit (EMD-21884).
(C) Left: the calculated electrostatic potential (negatively charged, red; positively charged, blue) of theCampylobacter jejuni (Cj)MotA cytoplasmic domain (based on the built
atomic model) and the CjFliG C-terminal domain (based on homology modeling) that contains the torque-generating helix. Right: charged residues, shown in stick
representation, on the potential interaction interface between the cytoplasmic domain of CjMotA and the torque helix of CjFliG. (D) The potential two interactions interfaces
between the stator unit and the C-ring. In counterclockwise (CCW) rotation of the motor, the FliG torque helix interacts with the inside cytoplasmic surface of the stator unit
(the side proximal to the motor axis). In clockwise (CW) rotation of the motor, the FliG torque helix flips 180° and interacts with the outside surface of the stator unit.
(E) Multiple-sequence alignment of the torque-generating helix of the FliG C-terminal domain from different bacterial species to highlight the conserved charged residues.
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motor switching between the CCWand CW rotational direction. In the CCW rotational mode, FliG
adopts a closed, compact form (Figure 4A), whereas, in the CW rotational mode, it adopts an
extended and open form [73] (Figure 4B). The conformational change of FliG during directional
switching was confirmed by recent cryo-ET studies [38], in which the authors showed the unique
composition and dynamic features of the C-ring that control motor rotational switching by
changing the interaction interface between stator unit and rotor.

The electrostatic interactions between stator units and rotor are essential for torque generation
[81–83]. Sequence comparison reveals conserved charged residues located in the large cyto-
plasmic domain of MotA, which is proposed to be its interaction interface with FliGN [34]. In
E. coli and Salmonella enterica, chromosomal point mutations of these residues to alanine or to
amino acids with the opposite charge decrease or completely abolish bacterial motility, showing
that this electrostatic interaction contributes to torque generation and the proper assembly of the
stator unit around the rotor [84]. Similar phenomena were also observed in V. alginolyticus, in
which the stator units harness the inner membrane sodium gradient to drive rotation of the
motor [85,86]. In CjMotAB, the FliG torque helix-binding site is most likely located at the cleft
between two MotA subunits, involving the positively charged residues R89 and R90 from one
MotA subunit and the negatively charged residues D97 and D117 from the adjacent subunit
[34] (Figure 4C). During MotA rotation around MotB, at least one of these binding sites incorpo-
rates the FliG torque helix through interactions by reversed charged residues (Figure 4D).
Multiple-sequence alignment of the torque-generating helix of the FliGC showed that these
charged residues are conserved among different bacterial species (Figure 4E). In addition,
cryo-ET and subtomogram averaging enabled visualization of the interaction in situ, supporting
the direct interplay between stator units and C-ring proteins FliG [36] (Figure 4A,B).

The number of stator units assembled around the rotor is variable. In some flagellar motors,
the stator units are constantly exchanged with those in the membrane pool [87,88] in a load-
dependent manner [89,90]. An increase in load promotes assembly of stator units, while a
reduction promotes disassembly [91,92]. This mechanosensitive turnover is driven by a
catch bond, a type of interaction that becomes stronger instead of weaker under force [91].
Recent work showed that this load-dependent remodeling is independent of the direction of
rotation of the motor, suggesting a passive mechanical mechanism [93]. Such dynamic remod-
eling of the stator unit enables the flagellar motor to efficiently adapt its output to changes in the
external load.

Mechanism of bi-directional rotation of the flagellar motor

In peritrichously flagellated bacteria, the external flagella are able to rotate in both CW and
CCWdirections. Cells move forward when their flagella rotate CCW and tumble when the rotation
switches to CW [7,94]. Although this is the case for E. coli and Salmonella, other flagellated
bacteria swim differently. For instance, V. alginolyticus has a single polar flagellum that pushes
(CCW rotation) or pulls (CW rotation) the cell body [95]. Another example is that of spiral-shaped
bacteria, also called spirochetes, which containperiplasmic flagella that lie in between the inner
and outer membranes. This unique feature makes spiral-shaped bacterial motility different from
that of most other motile bacteria. When the flagella at one cell pole rotate in CCW direction
and the flagella at the other cell pole rotate CW, the cell moves forward. When the flagella at
both poles rotate in the same direction, the cell flexes in place [38,96]. An additional interesting
phenomenon that illustrates the variety in swimming mechanisms of flagellated bacteria is
found in Sinorhizobium meliloti and Rhodobacter sphaeroides the flagella of which rotate only
CW; these bacteria reorient themselves through Brownian motion upon slowing down and
upon stopping rotation, respectively [97,98].
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In flagellar motors that rotate in both CW and CCW directions, the structural features of the stator
unit combined with the assumption of its unidirectional CW rotation upon ion permeation lead to a
model of the rotational directionality of the flagellar motor [34,99]. In CCW rotation of the motor,
the FliG torque helix interacts with the inside cytoplasmic surface of the stator unit (the side
proximal to the motor axis) (Figure 5A). CW rotation of the motor is achieved by remodeling of
the C-ring through a conformational change of FliG upon chemotaxis signaling: the FliG torque

TrendsTrends inin BiochemicalBiochemical Sciences Sciences

Figure 5. Mechanistic model of rotational switching. (A) Top: interactions of the unplugged stator unit (MotA, pink; MotB, black) with the C-ring (purple, yellow, and green)
during counterclockwise (CCW) rotation. The influx of protons drives the stator unit to rotate in a clockwise (CW)mode.When phosphorylated,CheY-P is not bound, and the torque
helix of FliG (purple) interacts with the inside cytoplasmic surface of the stator unit (the side proximal to the motor axis), causing the C-ring to rotate in a CCW mode. Bottom:
schematic of the rotor–stator unit scale, symmetry, and interaction. The expected FliG stoichiometry (34-fold; purple) is represented by splitting up the disc ring in 34 equally
sized slices. The fivefold stoichiometry and pseudo-symmetry of MotA (pink) is represented. (B) Top: interaction of the stator unit with the C-ring during CW rotation. When the
phosphorylated (i.e., activated), CheY-P (red) binds to the C-ring, FliG (purple) undergoes a conformational change, and the torque helix now interacts with the outside
cytoplasmic surface of the stator unit (the side facing away from the motor axis), causing the C-ring to rotate in a CW mode. Bottom: schematic of the rotor–stator unit scale,
symmetry, and interaction during CW rotation of the C-ring, showing that FliG adopts an extended and open form in this CW rotational mode.
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helix turns 180° around the stator unit, allowing it to now interact with the outside surface of the
stator unit [34,35,38] (Figure 5B). The FliG conformational change is the final step in a sophisti-
cated chemotaxis signaling system that allows the bacterium to sense chemical stimuli and
transmit this information through the phosphorylated form of the response regulator protein,
CheY [100]. Binding of CheY-P to FliM changes the direction of the flagellar motor rotation by
inducing a concerted conformational change of the C-ring, causing switching from CCW to
CW [101]. This model is supported by an observation in an E. coli strain lacking the gene
encoding CheY, in which flagellar rotation is locked in the CCWdirection [10,11]. Cryo-ET studies
of Borrelia burgdorferi [38] and V. alginolyticus [37] revealed in situ the conformational change of
the C-ring during rotational switching, in which FliG is present in different orientations in relation to
the stator unit.

Concluding remarks

The flagellar stator unit, which powers bi-directional rotation of the flagellum, is one of the smallest
motors found in bacteria. The recent cryo-EM structures of the flagellar stator units of different
bacterial species in their autoinhibited and unplugged states, together with biochemical studies,
revealed the architecture of the stator unit as well as its rotation mechanism upon ion permeation
[34,35]. These high-resolution structures also reveal the ion translocation pathway. Together with
recent cryo-ET data [36–38], they also suggest a plausible model for torque generation and
switching of the rotational direction of the flagellar motor.

Yet, many questions still remain (see Outstanding questions). For example, how does the stator unit
select different types of ion? This will require determining a high-resolution structure of the sodium-
driven stator unit, ideally in its different functional states. Several sodium channel blockers, including
amiloride and its analogs, such as phenamil, specifically inhibit the sodium-driven stator unit, although
their inhibition mechanism remains to be revealed at the molecular level [102]. Furthermore, the bind-
ing interface of the stator unit and flagellar rotor (MotA-FliG and PomA-FliG) is blocked by YcgR,
which acts as a flagellar brake protein in a manner that depends on the second messenger
bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) [103,104]. What is the
structural basis underlying this ‘brake’ mechanism? It is clear such questions will benefit from
high-resolution structures of the entire flagellar motor encompassing the stator units and the
C-ring, which are yet to be obtained. Furthermore, if the proposed torque generation model can
be validated in living bacterial cells, it can become clear whether and how stator unit action is
coupled with torque generation. It is an exciting time for research on the bacterial flagellar motor,
and the next few years will undoubtedly reveal many more of its secrets.
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