
research papers

2570 doi:10.1107/S1399004714015788 Acta Cryst. (2014). D70, 2570–2582

Acta Crystallographica Section D

Biological
Crystallography

ISSN 1399-0047

Solving the RNA polymerase I structural puzzle

Marı́a Moreno-Morcillo,a‡

Nicholas M. I. Taylor,b‡

Tim Gruene,c Pierre Legrand,d

Umar J. Rashid,a Federico M.

Ruiz,b Ulrich Steuerwald,a

Christoph W. Müllera and
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Knowing the structure of multi-subunit complexes is critical to

understand basic cellular functions. However, when crystals of

these complexes can be obtained they rarely diffract beyond

3 Å resolution, which complicates X-ray structure determina-

tion and refinement. The crystal structure of RNA polymerase

I, an essential cellular machine that synthesizes the precursor

of ribosomal RNA in the nucleolus of eukaryotic cells, has

recently been solved. Here, the crucial steps that were

undertaken to build the atomic model of this multi-subunit

enzyme are reported, emphasizing how simple crystallo-

graphic experiments can be used to extract relevant biological

information. In particular, this report discusses the combina-

tion of poor molecular replacement and experimental phases,

the application of multi-crystal averaging and the use of

anomalous scatterers as sequence markers to guide tracing

and to locate the active site. The methods outlined here will

likely serve as a reference for future structural determination

of large complexes at low resolution.
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1. Introduction

The vast majority of cellular processes are not carried out by

individual proteins; instead, these macromolecules assemble

to act in a coordinated manner (Alberts, 1998). However,

the large size, miscellaneous composition and conformational

dynamism that characterize macromolecular complexes

impose limitations on their structural analysis (Dyda, 2010).

To achieve this goal, X-ray crystallography and electron

microscopy (EM) have taken converging paths. While EM

tools have been developed to push the resolution up to the

quasi-atomic level (Amunts et al., 2014; Wong et al., 2014),

X-ray crystallographic methods aim to squeeze out informa-

tion from low-resolution data (Pomeranz Krummel et al.,

2009). The latter is owing to the fact that crystals of multi-

subunit complexes usually diffract to limited resolution and in

such cases standard quasi-automated procedures often fail,

making it necessary to push the available methodologies to the

limit.

RNA synthesis in the nucleus is performed by three

different RNA polymerases (Pols). Pol I transcribes ribosomal

DNA, Pol II produces all messenger RNAs and Pol III

synthesizes transfer and other small nontranslated RNAs.

Pol I-mediated transcription is critical to regulate cell growth

(Grummt, 2003). Accordingly, Pol I is the most active eukar-

yotic RNA polymerase, contributing up to 60% of the total

transcriptional activity (Warner, 1999). Moreover, alterations

in cell proliferation correlate with changes in ribosomal RNA

synthesis and thus misregulation of mammalian Pol I is asso-

ciated with different types of cancer (Moss et al., 2007).
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Pol I, Pol II and Pol III are macromolecular complexes with

overall masses of above 500 kDa consisting of 14, 12 and 17

subunits, respectively (Table 1). Five of these polypeptides,

accounting for 10–15% of the total mass, are common to all

three enzymes. In addition, Pol I and Pol III share the AC40/

AC19 heterodimer, which is homologous to Rpb3/Rpb11 in

Pol II. Among the seven Pol I-specific subunits, three show

significant homology to their counterparts in the other cellular

RNA polymerases: A190 and A135 interact with each other to

form the DNA-binding cleft and the active site, while A12.2

reaches the cleft to assist in RNA cleavage during back-

tracking. Two less conserved specific subunits form the stalk

heterodimer A43/A14 that is involved in Pol I dimerization.

Finally, the A49/A34.5 heterodimer has no counterpart in Pol

II but shows homology to specific regions in the transcription

factors TFIIF and TFIIE (Geiger et al., 2010).

While different crystal structures of Pol II have been

determined in the past dozen years that have nearly allowed a

dynamic view of the transcription process (Cheung & Cramer,

2012), atomic structural information on the complete Pol I

enzyme has been lacking. We were able to solve the structure

of this essential macromolecular complex from crystals

belonging to three different forms in space group C2, all of

which diffracted beyond 3.5 Å resolution (Fernández-Tornero

et al., 2013). The corresponding atomic models were fully

refined and deposited in the PDB as entries 4c3h, 4c3i and

4c3j, while a very similar structure has also been determined

(Engel et al., 2013). Several nonstandard approaches were

undertaken to achieve our results. While a partial molecular-

replacement solution could be obtained, experimental phasing

was necessary to yield proper electron-density maps. More-

over, we turned the appearance of various crystal forms to our

advantage, thus improving electron densities through multi-

crystal averaging. Using partial labelling of yeast cells with

selenomethionine (SeMet), we obtained sequence markers to

assist in model building in different areas of the structure.

In the present report, we describe the various difficulties

encountered during the Pol I structure-determination process

and the steps that were taken to overcome them. We also show

that relevant biological information such as Pol I dimerization,

widening of the DNA-binding cleft and the location of struc-

tural and functional ions can be gained at limited resolution.

We trust that this report will serve the crystallographic

community in providing a framework for similarly ambitious

projects on large macromolecular complexes.

2. Experimental procedures

2.1. Yeast strains and fermentation

Saccharomyces cerevisiae strain SC1613, encoding a tandem

affinity-purification (TAP) tag at the C-terminus of subunit

AC40, was provided by Cellzome AG (Heidelberg, Germany).

Yeast cells were grown on a fresh YPD plate and then

transferred to a 50 ml flask of YPD with 0.05% adenine sulfate

(YPDA) and incubated for 24 h at 30�C and 300 rev min�1.

This pre-inoculum was seeded into 500 ml of the same

medium, which after overnight incubation in identical condi-

tions was used to inoculate 30 l YPDA. Cells were grown in a

BIOSTAT Cplus fermentor (Sartorius) for 16 h at 30�C and

180 rev min�1 to an OD600 of 5–6, harvested by centrifugation

and stored at �80�C until use.

For optimized selenomethionine (SeMet) labelling, cells

were pre-adapted to a medium containing 80 mg l�1 SeMet.

Cells were first grown on a YPD plate and inoculated into

50 ml modified synthetic complete medium (MSCM)

composed of 13.4 g l�1 yeast nitrogen base without amino

acids (Difco), 30 g l�1
d-glucose (Merck) and 5.28 g l�1 amino-

acid mix (Formedium) complemented with 100 mg l�1

methionine. Cells were incubated for 24 h at 30�C and

300 rev min�1 and were then transferred to 200 ml MSCM

with 80 mg l�1 SeMet. After 4 d growth in identical conditions,

the cells were diluted with fresh MSCM with 80 mg l�1 SeMet,

grown for a further 24 h and stocked in glycerol at �80�C.

Fermentation was started from 50 ml pre-cultures of pre-

adapted cells in MSCM with 40 mg l�1 SeMet. After overnight

growth at 30�C and 300 rev min�1, the cells reached an OD600

of 4–6 and were used to inoculate 300 ml MSCM with

40 mg l�1 SeMet, followed by incubation at 30�C and

200 rev min�1 for 6–8 h. This was used to seed 32 l of the same

medium that was grown in a fermentor under controlled

oxygen and pH conditions. Cells were harvested at an OD600

of 5.5 and stored at �80�C until use.

2.2. Protein purification

For purification, 1 kg of cells was suspended in buffer A

(250 mM Tris–HCl pH 8, 40% glycerol, 250 mM ammonium

sulfate, 1 mM EDTA, 10 mM MgCl2, 10 mM ZnCl2, 12 mM

�-mercaptoethanol) supplemented with protease-inhibitor

cocktail (cOmplete EDTA-free, Roche) and lysed at 4�C with

glass beads in a BeadBeater (BioSpec). The soluble fraction

obtained after centrifugation (1 h at 14 000 rev min�1 in a

Beckmann JA14 rotor) was loaded onto Heparin Sepharose

(GE Healthcare) equilibrated in buffer A. The column was
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Table 1
Subunit composition of yeast RNA polymerases.

Pol II Pol I Pol III Chain ID

Rpb1 A190 C160 A

Rpb2 A135 C128 B

Rpb3 AC40† AC40† C

Rpb11 AC19† AC19† K

Rpb5 (ABC27)‡ Rpb5 (ABC27)‡ Rpb5 (ABC27)‡ E

Rpb6 (ABC23)‡ Rpb6 (ABC23)‡ Rpb6 (ABC23)‡ F

Rpb8 (ABC14.5)‡ Rpb8 (ABC14.5)‡ Rpb8 (ABC14.5)‡ H

Rpb10 (ABC10�)‡ Rpb10 (ABC10�)‡ Rpb10 (ABC10�)‡ J

Rpb12 (ABC10�)‡ Rpb12 (ABC10�)‡ Rpb12 (ABC10�)‡ L

Rpb4 A14 C17 D

Rpb7 A43 C25 F

Rpb9 + TFIIS§ A12.2 C11 I

TFIIF�§ A49-N C37 M

TFIIF�§ A34.5 C53 N

TFIIE�§ — C82 —
TFIIE�§ A49-C C34 Disordered
— — C31 —

† Shared by Pol I and Pol III. ‡ Shared by Pol I, Pol II and Pol III. § TFIIS, TFIIF
and TFIIE are not Pol II subunits but transcriptions factors that bind transiently.
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Table 2
Data-collection, processing and phasing statistics for crystal form C2-93.

Values in parentheses are for the outer shell.

Native 3 (Zn) Ta6Br12 HDPOA-Yb Phenyl lead

Native 1 (MR
and SIRAS)

Native 2
(MIRAS) Zn peak Ta peak Yb LIII peak Pb peak

Data collection
Space group C2 C2 C2 C2 C2 C2
Unit-cell parameters
a (Å) 427.4 425.2 426.8 425.1 425.6 423.1
b (Å) 141.6 140.6 141.0 141.0 141.2 141.2
c (Å) 142.3 139.7 141.3 140.6 140.3 140.2
� (�) 93.93 93.35 94.42 94.43 93.50 93.73

Beamline ID23-2, ESRF PX1, SOLEIL ID23-1, ESRF ID14-4, ESRF PX1, SOLEIL ID29, ESRF
Detector MAR CCD 225 PILATUS 6M ADSC Q315r ADSC Q315r PILATUS 6M ADSC Q315r
Wavelength (Å) 0.87260 1.07160 1.28270 1.25452 1.38530 0.94770
E (eV) 14208 11570 9666 9883 8950 13083
’total (

�) 140 580 360 360 360 360
�’ (�) 0.5 0.1 0.5 1.0 0.2 1.0

Data processing
Resolution (Å) 50.0–4.00 (4.25–4.00) 97.3–3.27 (3.35–3.27) 50.0–4.20 (4.43–4.20) 58.9–6.65 (6.83–6.65) 60.0–4.70 (4.90–4.70) 50.0–5.75 (5.90–5.75)
Total reflections 224284 (37699) 1393070 (105561) 460573 (68543) 114182 (7769) 282648 (21513) 173563 (11867)
Unique reflections† 71035 (11822) 127066 (9384) 120171 (18270) 29702 (2104) 81899 (6103) 45593 (3417)
Multiplicity 3.1 (3.2) 11.0 (11.2) 3.8 (3.8) 3.8 (3.7) 3.5 (3.5) 3.8 (3.5)
Completeness (%) 98.9 (99.5) 100.0 (99.9) 98.7 (93.2) 99.3 (97.0) 99.5 (99.5) 99.2 (99.7)
Rmeas (%) 20.0 (113.5) 16.2 (583.8) 22.7 (172.3) 15.1 (178.9) 12.6 (134.9) 16.6 (136.4)
hI/�(I)i 6.04 (1.27) 10.85 (0.51) 5.26 (1.16) 10.02 (1.00) 9.13 (1.35) 8.63 (1.36)
CC1/2 0.996 (0.372) 0.999 (0.317) 0.992 (0.416) 0.997 (0.265) 0.997 (0.580) 0.995 (0.425)
Wilson B (Å2) 127.6 122.3 159.5 391.5 232.2 293.6

Phasing/markers
Sites N/A N/A 7 Zn 7 Ta + 7 Zn 4 Yb 1 Pb
SIRAS FOM (exp/DM) 0.08/0.64 N/A
MIRAS FOM (exp/DM) 0.21/0.67 N/A

† For anomalous data, Friedel pairs were treated as separate reflections.

Table 3
Data-collection, processing and phasing statistics for crystal form C2-90.

Values in parentheses are for the outer shell.

SeMet HDPOA-Yb

Native 4 Se peak Yb LIII peak LIII rising inflection LIII falling inflection Remote

Data collection
Space group C2 C2 C2
Unit-cell parameters
a (Å) 401.3 403.5 404.5
b (Å) 139.9 140.4 140.4
c (Å) 141.0 142.1 143.0
� (�) 90.41 90.03 90.33

Beamline PX1, SOLEIL PX1, SOLEIL PX1, SOLEIL
Detector PILATUS 6M PILATUS 6M PILATUS 6M
Wavelength (Å) 0.98011 0.97903 1.38545 1.38592 1.38499 0.95372
E (eV) 12650 12664 8949 8946 8952 13000
’total (

�) 400 1520 200 180 180 360
�’ (�) 0.1 0.1 0.1 0.1 0.1 0.1

Data processing
Resolution (Å) 79.9–3.36 (3.44–3.36) 71.1–3.59 (3.69–3.59) 49.2–4.00 (4.24–4.00) 49.2–4.00 (4.24–4.00) 49.2–4.00 (4.24–4.00) 49.2–4.00 (4.10–4.00)
Total No. of reflections 846467 (63472) 2592789 (126603) 258956 (40241) 231002 (36126) 231045 (36026) 466906 (34716)
Unique reflections† 110892 (8124) 181271 (12905) 130172 (20513) 128213 (20343) 128253 (20291) 132998 (9862)
Multiplicity 7.6 (7.8) 14.3 (9.8) 2.0 (2.0) 1.8 (1.8) 1.8 (1.8) 3.5 (3.5)
Completeness (%) 99.8 (97.6) 99.6 (95.2) 97.2 (95.2) 96.4 (95.2) 96.3 (94.9) 99.7 (99.7)
Rmeas (%) 21.3 (254.7) 19.9 (391.7) 10.7 (135.4) 9.2 (90.2) 9.7 (95.6) 12.9 (190.2)
hI/�(I)i 8.52 (0.83) 11.20 (0.93) 7.08 (0.94) 8.05 (1.36) 7.80 (1.29) 8.01 (0.92)
CC1/2 0.996 (0.303) 0.999 (0.375) 0.997 (0.489) 0.998 (0.645) 0.997 (0.624) 0.997 (0.435)
Wilson B (Å2) 97.2 159.3 160.8 151.7 150.8 159.4

Phasing/markers
Sites N/A 90 Se 4 Yb 4 Yb 4 Yb 4 Yb + 7 Zn
FOM (exp/DM) N/A N/A 0.27/0.68

† For anomalous data, Friedel pairs were treated as separate reflections.



washed with buffer B (50 mM Tris–HCl pH 8, 250 mM

ammonium sulfate, 0.5 mM EDTA, 1 mM MgCl2, 10 mM

ZnCl2, 1 mM �-mercaptoethanol, 0.5 mM PMSF) and the

complex was eluted from the resin with buffer B* (buffer B

with 1 M ammonium sulfate). The sample was diluted to

500 mM ammonium sulfate and incubated with 10 ml pre-

equilibrated IgG Sepharose (GE Healthcare) for 6 h. After

washing with ten column volumes of buffer C (50 mM Tris–

HCl pH 8, 20% glycerol, 225 mM ammonium sulfate, 0.5 mM

EDTA, 1 mMMgCl2, 10 mM ZnCl2, 2 mM �-mercaptoethanol,

1 mg ml�1 Pefabloc), the IgG beads were mixed with Tobacco

etch virus (TEV) protease and incubated overnight at 4�C in

the same buffer. The supernatant was recovered and the resin

was further washed with ten column volumes of buffer C*

(buffer C without glycerol and with only 60 mM ammonium

sulfate). The sample was subsequently purified by ion

exchange on a Mono Q column (GE Healthcare); elution was

performed using a gradient from 60 mM to 1M ammonium

sulfate in buffer D (40 mM Tris–HCl pH 8, 0.5 mM EDTA,

1 mM MgCl2, 10 mM ZnCl2, 1 mg ml�1 Pefabloc, 10 mM

DTT). Pol I and Pol III eluted at �250 and �350 mM

ammonium sulfate, respectively. The sample was concentrated

to 6.5–7 mg ml�1 before crystallization.

2.3. Crystal growth and derivatization

Initially, commercial sparse-matrix screens from Qiagen,

Hampton Research and Jena Bioscience were used in 96-well

plates with sitting drops made by mixing 0.1 ml screening

solution with 0.1 ml protein solution with a Mosquito robot

(TTP Labtech) followed by incubation at 18�C. Grid-screen

optimization was performed in the same conditions. The best

results were reproduced in 24-well sitting drops by mixing 1 ml

protein solution and crystallization solution and incubating at

18�C, yielding crystals after 4–7 d. For crystal form C2-93, the

reservoir consisted of 16–30% ethylene glycol (EG), 100 mM

MES pH 6.3–6.9, while crystals of forms C2-90 and C2-100

grew in 1–12.5% MPD, 100 mM Tris–HCl pH 6.3–6.9. Cryo-

protection was achieved by either a stepwise increase of the

EG concentration to 30% or by soaking crystals in a solution

with 22.5% MPD. All crystals were cooled in cryoloops in a

nitrogen stream at 100 K. For initial phasing, a native C2-93

crystal was soaked for 1 h in 30% EG containing 2 mM

Ta6Br12 (Jena Bioscience). For advanced phasing, a native C2-

90 crystal was soaked for 2 min in 22.5% MPD with 100 mM

Yb-HPDO3A from NatX-Ray/Jena Bioscience followed by

back-soaking in the cryoprotectant solution for 1 min. For

active-site location, a native C2-93 crystal was soaked for 1 h

in 30% EG containing 1 mM phenyl lead followed by back-

soaking in the cryoprotectant solution.

2.4. Data collection and structure determination

Diffraction data were collected at the synchrotrons listed

in Tables 2, 3 and 4 and were processed using XDS (Kabsch,

2010). For data processing, the crystal-to-detector distance

was fixed during integration to yield more reliable unit-cell

parameters including error estimates. Molecular replacement

was performed with Phaser (McCoy, 2007) using standard

settings. Crystal structures of Pol II were used for initial tests:

ten subunits with open (PDB entry 1i3q) and closed (PDB

entry 1i50) clamps and 12 subunits (PDB entry 1wcm)

(Cramer et al., 2001; Kettenberger et al., 2004). For sequential

molecular replacement, the Pol II structure was divided into

the following modules (for domain boundaries, see Cramer et

al., 2001). ‘Region 1’ comprises Rpb2 (except for the lobe and

clamp domains), the Rpb3/Rpb11 heterodimer, Rpb10 and

Rpb12. ‘Region 2’ includes the Rpb1 cleft domain, Rpb5,

Rpb6 and the Rpb7/Rpb4 stalk. ‘Region 3’ comprises the

active site, pore 1, funnel and dock domains of Rpb1 and

subunit Rpb8. The ‘Clamp core’ includes the corresponding

domains of Rpb1 and Rpb2, while the ‘Lobe’ contains the

Rpb2 lobe domain. Poorly conserved domains (jaw, foot and

clamp head) were excluded from the models.

Experimental phasing was performed with SHARP

(Bricogne et al., 2003) with heavy atom positions obtained by

cross-difference Fourier analysis from model phases using the

program FFT from the CCP4 suite (Winn et al., 2011). For

initial SIRAS phasing of C2-93, the native 1 data set and a

Ta6Br12 (Jena Bioscience) derivative were combined. For

advanced MIRAS phasing of C2-93, we used the native 2 data

set, the Ta6Br12 derivative, a Yb-HPDO3A derivative and data

collected at the Zn edge. For MAD phasing of C2-90, a Yb-

HPDO3A derivative was used. In all cases, f 0 and f 00 for peak

and inflection wavelengths were determined by energy scans,

while default values were used for remote wavelengths. f 0 and

f 00 were fixed during refinement except in the initial SIRAS

phasing, where only f 0 was fixed. The heavy atom positions,
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Table 4
Data-collection and processing statistics for crystal form C2-100.

Native 5 Native 6 (S-SAD)

Data collection
Space group C2 C2
Unit-cell parameters
a (Å) 400.4 405.1
b (Å) 140.2 141.1
c (Å) 122.9 123.8
� (�) 100.14 100.15

Beamline P14, DESY PETRA III PX1, SOLEIL
Detector PILATUS 6M PILATUS 6M
Wavelength (Å) 0.97626 1.6531
E (eV) 12700 7500
’total (

�) 360 2180
�’ (�) 0.1 0.1

Data processing
Resolution (Å) 77.6–3.03 (3.11–3.03) 70.0–3.50 (3.59–3.50)
Total reflections 895115 (63225) 3527564 (230140)
Unique reflections† 128299 (9259) 170279 (12574)
Multiplicity 7.0 (6.8) 20.7 (18.3)
Completeness (%) 98.5 (96.3) 99.9 (99.9)
Rmeas (%) 11.7 (240.2) 22.6 (428.4)
hI/�(I)i 13.20 (0.86) 12.67 (0.97)
CC1/2 0.999 (0.307) 0.999 (0.455)
Wilson B (Å2) 96.0 120.2

Phasing/markers
Sites N/A 77

† For anomalous data, Friedel pairs were treated as separate reflections.



B factors and occupancies were refined in all cases, while the

model phases were only used for parameter refinement in

MIRAS. After each phasing protocol, phases were improved

by solvent flattening with SOLOMON (Abrahams & Leslie,

1996) andDM (Cowtan &Main, 1996) using a mask calculated

from the model as implemented in SHARP. Multi-crystal

averaging was performed using RESOLVE (Terwilliger &

Berendzen, 1999) as implemented in PHENIX (Adams et al.,

2010), including B-factor sharpening of the data with B factors

ranging from 34 to 100 Å2. In this procedure, the model was

divided into 28 groups as follows (for domain boundaries, see

Fernández-Tornero et al., 2013). A190 was split into clamp,

active site + dock + pore 1, funnel, cleft + foot and jaw, A135

was split into protrusion + fork, lobe + external, hybrid

binding + wall and anchor + stalk binding + clamp, AC40 was

divided into dimer + 4Fe4S-like and domain 2, A43 was

divided into N-terminal, tip, OB domain and C-terminal tail,

A12 was split into N-terminal Zn ribbon, linker and

C-terminal Zn ribbon, and Rpb12 was split into Zn ribbon and

C-terminal tail; the remaining subunits were treated inde-

pendently.

2.5. Model building and refinement

Model building was performed with Coot (Emsley et al.,

2010) using secondary-structure restraints and strong

geometry weights during real-space refinement. Refinements

in PHENIX (Adams et al., 2010) and REFMAC5 (Murshudov

et al., 2011) were run as a grid screen to evaluate the effects

of different variables. The results of parameter changes were

evaluated based on the r.m.s. deviations of bonds and angles,

figure of merit, log-likelihood gain, Rwork and Rfree values and

model geometry, and only the best trial was taken for the next

building round. External restraints for REFMAC5 were

calculated with ProSMART (Nicholls et al., 2012) from the

available PDB files after modification with mrtailor (Gruene,

2013). BUSTER (Bricogne et al., 2011) was used with default

settings.

3. Results and discussion

3.1. Purification and crystallization

The purification of complete, endogenous RNA polymerase

I from S. cerevisiae was performed using a strain with a TAP
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Figure 1
Crystallization of Pol I. (a) Typical Pol I crystals in space group C2 grown in sitting drops, as imaged 5 d after experimental setup. (b) 15% SDS–PAGE
analysis of purified yeast Pol I (Coomassie staining) and a Pol I crystal (silver staining). The different relative intensity of the bands is owing to the
different staining methods. Thicker bands of the MWmarker (left lane) correspond to 50 and 10 kDa. (c) Pol I dimer formed by insertion of the A43 C-
terminal tail of one monomer (pink) into the upper cleft of the neighbouring monomer (cyan) and vice versa. (d) Crystal packing in the different crystal
forms as viewed from the b axis.



tag on subunit AC40, which is shared between Pol I and Pol

III. Accordingly, the two enzymes were isolated in the puri-

fication protocol with final yields of about 6 and 2 mg,

respectively, from �1 kg wet weight. About 65 kg of yeast was

processed to successfully complete the project.

While crystallization trials with Pol III were unsuccessful,

probably owing to substoichiometry of some subunits as

observed by native mass spectrometry (Lane et al., 2011),

Pol I yielded hits in the very first sparse-matrix screenings.

Successful precipitants ranged from alcohols (ethanol and

butanediol) to ethylene glycol and different kinds of poly-

ethylene glycol, but only crystals grown in ethylene glycol

diffracted beyond 20 Å resolution. Optimization of the initial

condition using standard grid screenings (pH versus ethylene

glycol concentration) eventually yielded crystals that

diffracted to 4 Å resolution (Fig. 1a; Table 2). These crystals,

hereafter named C2-93 according to their � angle, belonged

to space group C2 and contained all 14 subunits as shown

by SDS–PAGE (Fig. 1b). New sparse-matrix screens aimed at

finding alternative crystal forms with improved diffraction

produced crystals in a condition with methylpentanediol

(MPD). After grid-screen optimization, two additional crystal

forms also belonging to space group C2, hereafter named

C2-90 and C2-100 (Tables 3 and 4), were obtained from this

condition. Crystals diffracting to around 3.5 Å resolution

could be reproducibly grown in the three forms, but only one

C2-100 crystal diffracted to 3.0 Å resolution. During the

project, more than 2000 crystals were tested to collect

successful data sets.

All crystal forms contain one molecule of the Pol I enzyme

in the asymmetric unit. However, the crystallizing entity is a

compact Pol I dimer (Fig. 1c), as also observed in the simul-

taneously determined Pol I structure (Engel et al., 2013) and

in solution under defined conditions (Milkereit et al., 1997).

The twofold axis relating the monomers is coincident with the

crystallographic b axis, which is the dimension that changes

the least among the crystal forms. Reduction of a and c

improves crystal packing, with the tightest packing occurring

in C2-100, where both axes are reduced (Fig. 1d). While

compaction along c correlates with better diffraction power,

it is also accompanied by partial disordering of the DNA-

mimicking loop involved in transcriptional regulation

(Fernández-Tornero et al., 2010). Moreover, the C-terminal

domain of subunit A12.2 involved in RNA cleavage is best

ordered in the most loosely packed C2-93 crystal form.

3.2. Data collection and processing

Native data sets were collected using methods for large unit

cells (Mueller et al., 2007) such as fine ’ slicing to avoid spot

overlapping. Also, as the crystals were radiation-sensitive,

we employed minimal exposure times and took advantage of

attenuators. When high resolution or high redundancy was

required it was sometimes necessary to merge partially over-

lapping ’ slices from different areas of the same crystal. This

was possible because of the large size of our crystals (typically

0.7 � 0.3 � 0.05 mm) in comparison to the beam size (0.01–

0.1 mm in diameter). In such cases, the correlation coefficient

between data sets and largely deviating cell dimensions was

used to remove outliers (Supplementary Table S11). During

the project, the PILATUS hybrid pixel detector was slowly

introduced at different synchrotrons. This detector was critical

in measuring high-resolution diffraction spots accurately,

mainly owing to enhanced sensitivity and fine slicing (Mueller

et al., 2012).

Various approaches were used to extract maximal infor-

mation for structure solution from the derivative data sets. In

most cases, we collected inverse-beam data sets to minimize

the adverse effects of radiation damage (Hendrickson et al.,

1989), especially for data sets collected at the peak energy of

the fluorescence spectrum. However, for the critical ytterbium

MAD experiment that yielded good-quality experimental

phases, a different approach was used. Ytterbium has a strong

white line whose signal drops beyond the absorption edge,

making it possible to easily identify two inflection points

(Supplementary Fig. S1). In our data-collection strategy, we

first aligned the crystal along a twofold symmetry axis in order

to collect Bijvoet pairs on the same image. This was allowed

by the kappa-based goniometer available at the PROXIMA1

beamline at SOLEIL, after calculation of goniometer angles

using the XOalign program (Legrand, 2009). Secondly, we

collected one data set at each of the inflection points to

properly measure the dispersive signal, which was the key to

success in our phasing experiment. Finally, we collected a data

set at the LIII absorption edge to gather anomalous informa-

tion, followed by a reference data set at high energy from a

different spot on the crystal.

The criterion to cut the resolution of a data set where

hI/�(I)i = 2 is arguably conservative and is intended not to

include noise in the data. Noise would have a negative effect

on the map quality and would hamper model building and

refinement. The integration of noise can also affect the overall

data-set quality because of the profile fitting performed by

most modern data-processing software. As recently discussed,

the resolution cutoff is by no means uniquely determined

(Evans & Murshudov, 2013; Karplus & Diederichs, 2012).

Once our model structures achieved decent quality with Rwork

and Rfree values below 30%, we reprocessed our data to

include all reflections down to where CC1/2 = 30%. This is the

same limit as suggested for the cutoff of the anomalous signal

used in experimental phasing strategies, where the inclusion of

noise is a major obstacle to success (Schneider & Sheldrick,

2002). We confirmed by visual inspection of the electron-

density maps that their quality improved, despite the high

Rmeas and low hI/�(I)i values at this level (Tables 2, 3 and 4).

The resolution difference between the hI/�(I)i and the CC1/2

criterion is 0.35, 0.36 and 0.24 Å for C2-90, C2-93 and C2-100,

respectively, which is close to recently suggested values (Luo

et al., 2014). Data statistics such as Rmeas and hI/�(I)i take all

data into account, while refinement programs weight reflec-

tions in a more sophisticated manner, so that the contribution
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1 Supporting information has been deposited in the IUCr electronic archive
(Reference: TZ5059).



to noise is weighted down while real signal is kept to improve

the map quality. We suggest that crystallographic tables list

both the values at hI/�(I)i = 2.0 and at the resolution limit

used for refinement.

3.3. Initial 12-subunit model

Starting phases were obtained by molecular replacement

(MR) using a 4.0 Å resolution data set from a C2-93 crystal

and the available atomic structures of Pol II. Initially, atomic
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Figure 2
Molecular replacement leads to an initial model of Pol I. (a) Surface representation of the Pol II model (PDB entry 1wcm) showing the five different
regions used in the sequential molecular replacement, with non-included domains in grey. Structural domains are labelled. (b) Superposition of the initial
Pol I model onto the Pol II structure taking Region 1 as a reference. The wide conformation of the Pol I cleft is clearly observed. (c) Anomalous
difference Fourier map at 8 Å resolution, contoured at 4�, showing the seven Zn positions in Pol I, two of which helped in the localization of A12.2. The
Pol II model is shown as a grey ribbon. (d) Initial 12-subunit model of Pol I obtained by molecular replacement followed by homology modelling. Subunit
colours are as shown in the inset.



structures of Pol II with 12 and ten subunits were used, but

both yielded negative log-likelihood gain (LLG) values. Since

we expected conformational differences between Pol I and Pol

II, the Pol II model (PDB entry 1wcm; Armache et al., 2005)

was divided into five regions similar to the modules described

in Cramer et al. (2001) (see x2 and Fig. 2a) and subjected to

sequential molecular replacement. ‘Region 1’ was found first,

with a Z-score of 8.9 and an LLG value of 16. The small LLG

value reflects the fact that only C� atoms were employed

during sequential MR. Placement of ‘Region 2’, comprising

the shelf and stalk modules, increased the Z-score and LLG

values to 14.0 and 42, respectively. The lower Z-score obtained

when the shelf was used alone suggested that the position of

the stalk was roughly correct. Positioning of ‘Region 3’ slightly

lowered the Z-score to 13.7 but significantly increased the

LLG to 69, indicating correct location of this domain,

as confirmed by the biological consistency of the solution.

Moreover, when this solution containing the three regions was

subjected to simple MR, the overall Z-score and LLG values

were 19.0 and 70, respectively. In contrast, subsequent
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Figure 3
Experimental phasing and density modification. (a) Binding positions of the different derivatives identified by cross-difference Fourier using available
model phases. Tantalum, ytterbium and zinc are shown in green, red and yellow, respectively. (b) Pol I model fitted into the EM reconstructions of Pol III
(EMD-1802) and the Pol II pre-initiation complex (EMD-2306), showing comparable positions for the A49/A34.5 heterodimer (violet/blue) and its Pol
III and Pol II counterparts C37/C53 and TFIIF, respectively. (c) General view (top) and zoom (bottom) of the electron-density maps (contoured at 1�)
obtained during the Pol I structure determination. From left to right: solvent-flattened map after tantalum phasing in C2-93 (Ta), solvent-flattened map
after ytterbium phasing in C2-90 (Yb), map resulting from a multi-crystal averaging in C2-93 (MXA) and final refined map in C2-100 (Ref). While the
initial Ta map showed the position of the A49/A34.5 dimerization module, the Yb map showed improved density for the main chain and the MXA map
showed details of side chains.



molecular replacement with the clamp core or lobe modules

did not yield meaningful solutions.

Using the three-region MR solution as a template, we built

a truncated version of the Pol I structure comprising 11

subunits (Table 1, first 11 rows). The five subunits that are

common to the three eukaryotic RNA polymerases, Rpb5,

Rpb6, Rpb8, Rpb10 and Rpb12, were maintained. The avail-

able crystal structure of the Pol I stalk (Kuhn et al., 2007),

comprising subunits A43 and A14, was placed by super-

position of A43 onto Pol II subunit Rpb7. For A190, A135,

AC40 and AC19, homology modelling of conserved domains

was employed. The resulting model showed a wide confor-

mation of the DNA-binding cleft. When the crystal structure

of Pol II was superposed taking ‘Region 1’ as a reference, the

remaining half of the enzymes no longer superposed (Fig. 2b),

explaining why MR with the entire Pol II model was not

successful. Importantly, this unique conformation of the

enzyme is one of the main characteristics of dimeric Pol I

(Fernández-Tornero et al., 2013), demonstrating that useful

biological information can be extracted through X-ray crys-

tallographic experiments even in the absence of a refined

atomic model.

At this stage, three entire subunits were missing in our

model: A12.2, A49 and A34.5. An atomic model of the A49/

A34.5 dimerization module was built from the available

crystal structure of human TFIIF subunits Rap74/Rap30

(Gaiser et al., 2000) using MODELLER (Eswar et al., 2006).

Nevertheless, all MR trials were unsuccessful. Subunit A12.2 is

made by two Zn ribbons, each homologous to the N-terminal

domain of Pol II subunit Rpb9 and the C-terminal domain of

TFIIS, connected by an extended linker (Fernández-Tornero

et al., 2013). Therefore, in order to locate A12.2 in our

structure, we collected a data set at the K absorption edge of

Zn using a C2-93 native crystal (Table 2) and calculated Zn

anomalous maps by cross-difference Fourier analysis using the

model phases as a reference. Seven Zn positions with � values

above 4 were identified, correlating with the expected Pol I

composition (Fig. 2c). Two Zn2+ ions belong to subunits Rpb10

and Rpb12 shared by Pol I and Pol II. Three other Zn2+ ions in

the clamp are conserved between these enzymes but are

shifted in Pol I by about 10 Å from the expected position,

further confirming the wide conformation of the DNA-binding

cleft. The two remaining Zn2+ ions belong to the A12.2 Zn

ribbons and mark their positions. Homology modelling using

the N-terminal domain of Rpb9 and the C-terminal domain of

TFIIS allowed us to obtain an initial 12-subunit model of Pol I

comprising 59% of the enzyme residues (Fig. 2d).

3.4. Experimental phasing and density modification

Refinement of the initial 12-subunit model was hampered

by the poor quality of the phases. In order to obtain experi-

mental phase information, we first collected a data set at

the Ta absorption edge from a Ta6Br12 derivative belonging

to crystal form C2-93 that diffracted to 6.65 Å resolution

(Table 2). Using the available model phases, we found seven

Ta6Br12 positions with � values above 6 (highest peak = 15.4�),

mostly located at charged surface regions (Fig. 3a, green

spheres). Attempts to determine the phases using this data set

alone failed, but SIRAS in combination with the 4.0 Å reso-

lution native data provided acceptable phases at low resolu-

tion, which were extended to the resolution of the native data

through solvent flattening. While the map quality was still

moderate, as shown by discontinuous density for �-strands, a

large piece of additional density was readily visible next to the

lobe element (Fig. 3c, green map). We manually fitted the

homology model of the A49/A34.5 dimerization module (see

above) into this density, assisted by cross-linking results

between this module and the lobe (Jennebach et al., 2012).

Interestingly, the position of this module agrees nicely with

that of the equivalent Pol III heterodimer (Fernández-Tornero

et al., 2010) and also TFIIF bound to Pol II (He et al., 2013),

as observed by electron cryomicroscopy (Fig. 3b). This result

confirmed the hypothesis that the three nuclear RNA poly-

merases share a TFIIF-like dimerization module, further

showing how relevant biological information can be extracted

from low-resolution crystallographic experiments. Interest-

ingly, a similar module has been found in TFIIIC, a Pol III-

specific transcription factor (Taylor et al., 2013).

To improve the experimental phases, we tested several

lanthanoid complexes (Talon et al., 2011), finding success

in the case of a C2-90 crystal soaked with Yb-HPDO3A. A

multi-wavelength anomalous dispersion (MAD) data set was

obtained at wavelengths corresponding to the peak, the rising

and falling inflection points of the Yb LIII absorption edge and

a high-energy remote position (Table 3). Using the available

model phases, we identified four Yb positions with � values

above 6 (highest peak = 20.1�) located on charged surface

regions (Fig. 3a, red). Interestingly, two of the sites form a
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Figure 4
Evolution of structural refinement in C2-93. Rwork (green), Rfree (red),
Ramachandran favoured residues (blue), Ramachandran outliers
(purple), MolProbity percentile (yellow) and residues built (black), all
expressed in percentages, are plotted per refinement cycle. Rounds 1–6
were run against native 1 at increasing resolution cutoffs, while rounds
7–9 were run against native 2 using the same strategy (Table 2).



dimer, as previously observed for this kind of compound

(Girard et al., 2002). SAD, SIRAS and MAD phasing using

different wavelength combinations were tested to generate

phases at 4.1 Å resolution, followed by solvent flattening. The

best results were obtained with MAD using the peak, rising

and falling inflection and high-energy remote wavelengths.

The resulting map greatly improved the definition of the main

chain, especially in regions containing �-strands or loops

(Fig. 3c, red map).

A two-step strategy was used to enhance the map quality

and further remove model bias. Firstly, we used the prime-and-

switch protocol, which maximizes the map likelihood using an

unbiased probability estimate (Terwilliger, 2004) and can be

combined with B-factor sharpening. We found it useful to

analyse maps with different B-factor sharpening to examine

high-resolution and low-resolution features. The resulting

maps proved helpful in discovering wrongly traced main-chain

regions as well as in rotamer selection. Secondly, to overcome

the lack of NCS, we deployed multi-crystal averaging using the

model and experimental phases in C2-90 and C2-93. While the

phases in C2-90 were of excellent quality at this stage, further

optimization was required in the case of C2-93. New model

phases in this crystal form were obtained by rigid-body

refinement of the C2-90 model after division into 28 groups

(see x2). The resulting model phases were then combined with

experimental information in an improved MIRAS protocol

that included a new native data set to 3.6 Å resolution, the

original tantalum derivative, a new ytterbium derivative

collected at the LIII peak and a data set collected at the

absorption peak of Zn (Table 2). Multi-crystal averaging using

prime-and-switch maps in C2-93 and C2-90 for starting coef-

ficients yielded combined maps of excellent quality (Fig. 3b,

purple map), with well defined density for most side chains

and certain main-chain areas where previous density was poor.

3.5. Model building and refinement

The initial model was less than 60% complete and had

strong model bias towards the Pol II structure used for

molecular replacement. Moreover, serious tracing errors were

present owing to the limited map quality. While refinement

with the default settings of the programs generally lowered

the Rwork and Rfree values, the resulting model showed poor

geometry and difference maps did not allow major extensions

or corrections. To overcome this situation, several parameters

were tuned with REFMAC5 (Nicholls et al., 2012) and

PHENIX (Adams et al., 2010), including the geometry

weighting, the total number of cycles, the use of experimental

phase information, the bulk-solvent estimation and the

application of external restraints for secondary-structure

elements. The best results were obtained with a high number

of cycles (up to 100–500 cycles in REFMAC5 and 15 macro-

cycles in PHENIX), strong geometry weights and the use of

experimental phase information (Pannu et al., 1998) and

external geometric restraints (Murshudov et al., 2011). To

reduce the model bias from external restraints, nonconserved
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Figure 5
Use of sequence markers. (a) Excitation scan at the Se K edge from a SeMet-labelled Pol I crystal indicating the presence of Se in the sample. Peaks
corresponding to Zn K�, Se K� and Se K� are also labelled. (b) The anomalous difference map localizing Se peaks is shown in violet. (c) Anomalous
difference map (blue) from a lead-derivative crystal showing the location of the Pol I active site. The primary Mg2+ ion is coordinated by a triad of Asp
residues in subunit A190. The putative position of the secondary Mg2+ ion is shown in purple next to the Asp residues in subunit A135.



regions were removed from the reference Pol II structure

using the programmrtailor (Gruene, 2013). Typically, about 15

different settings were tested and rated based on the stereo-

chemical quality of the model and the visual quality of the

maps.

The initial advances were slow and mostly concerned model

completion (Fig. 4, rounds 1–6), mainly owing to the low

resolution of the experimental phase information and the low

quality and bias of the 2mFo � DFc maps. Therefore, model

building at this stage was conservative to avoid mistakes such

as register shifts, incorrect tracing or wrong chain assignment.

Atomic models of homologous proteins were displayed to

assist building, such as the structures of S. cerevisiae Pol II

(Armache et al., 2005), Sulfolobus shibatae Pol (Wojtas et al.,

2012), the Candida glabrata A49/A34.5 dimerization module

(Geiger et al., 2010) and the S. cerevisiae A43/A14 stalk sub-

complex (Kuhn et al., 2007). For conserved domains, a similar

tracing coherent with the experimental map was used. In

nonconserved regions, polyalanine stretches were built and

the sequence was only assigned if the presence of predicted

secondary-structure elements and bulky side chains supported

the register with high confidence.

Once we had obtained higher resolution experimental

phases and produced multi-crystal averaging maps, progress

was faster and the model steadily improved (Fig. 4, rounds 7–

8). Artefacts from building such as cis-peptides were removed,

while rotamer outliers were corrected, preferring those similar

to the reference structures when the maps were unclear. In

the final rounds, the need for phase improvement over the

high-quality model phases was obviated, while occasionally

remaining errors were overcome using maps other than those

arising from refinement, i.e. prime-and-switch and multi-

crystal averaging. During the entire procedure, we progres-

sively improved the resolution of our crystals, which was

critical to obtain maps of better quality and thus more accu-

rate atomic models. The best-diffracting crystal, with a reso-

lution of 3 Å and belonging to C2-100 (Table 4), was used for

the remaining geometry corrections. Final refinement with

BUSTER (Fig. 3c, blue map) yielded improved R values and

models of excellent quality in all three crystal forms, as shown

by MolProbity (Chen et al., 2010).

3.6. Sequence markers for trace confirmation and active-site

location

To solve the remaining ambiguities and fully confirm our

tracing, we performed a series of anomalous data-collection

experiments on atoms that mark the positions of specific

amino acids. Firstly, we undertook the challenge of using

native crystals to locate the position of S atoms from cysteines

and methionines in the structure. Owing to the weak scattering

power of S atoms, we aimed to enrich the anomalous signal by

harvesting an enormous amount of data at 1.77 Å resolution,

where the anomalous scattering power of S is about 0.7 e�.

The best data set was collected from a C2-100 crystal (Table 4),

allowing the location of 77 of 174 modelled S atoms (44%)

within a distance of 3.0 Å from methionine or cysteine resi-

dues (Supplementary Table S2). This moderate success led us

to labelling experiments using selenomethionine (SeMet). We

produced and purified partially labelled SeMet Pol I, which

yielded crystals in the same conditions as the native protein,

although they took 3–4 days longer to grow (Fig. 5a). A highly

redundant data set was collected from a C2-90 crystal at the

Se K edge (Table 3). This procedure allowed the location of 90

of 102 modelled Se atoms (88%) within a distance of less than

2.3 Å from methionine residues (Supplementary Table S3).

This result was very useful to confirm the main-chain tracing

(Fig. 5b), especially in poorly defined regions in the complex,

such as the A49/A34.5 dimerization module.

Following a similar strategy, we also aimed to identify the

active site of the enzyme. In Pol II, a Mg2+ ion coordinated by

three aspartate residues in subunit Rpb1 is directly involved

in catalysis, while a secondary Mg2+ ion has been proposed to

participate in NTP substrate binding (Brueckner et al., 2009;

Vassylyev et al., 2007). Our electron-density maps only showed

metal-like density in crystal form C2-100, where it was possible

to model an Mg2+ ion next to two aspartate residues in subunit

A135 (Fig. 5c, purple sphere), which may correspond to the

secondary metal in Pol II. In order to confirm that the primary

metal-binding site was conserved in Pol I, we prepared a lead

derivative because Pb2+ is coordinated with similar geometry

to Mg2+ (Holloway & Melnik, 1997). Anomalous maps

calculated from a data set collected at the lead absorption

edge demonstrate that the active-site residues (Asp627,

Asp629 and Asp631 in subunit A190) are indeed capable of

coordinating Mg2+ (Fig. 5c). Therefore, a catalytic mechanism

involving two metals, equivalent to that proposed for Pol II

and bacterial Pol (Brueckner et al., 2009; Vassylyev et al.,

2007), appears to be likely.

3.7. Proposed workflow

The final models show excellent statistics, with MolProbity

scores in the 100th percentile (C2-90), 98th percentile (C2-93)

and 99th percentile (C2-100), i.e. among the best structures at

comparable resolution. Two reasons may explain these results.

Firstly, the inclusion of weak but significant data improves the

model quality, as suggested previously (Evans & Murshudov,

2013; Karplus & Diederichs, 2012). Secondly, careful model

building taking into account different electron-density maps,

conserved regions of homologous proteins, sequence markers

and stereochemistry allows the construction of good models

even at limited resolution with poor initial phase information.

Despite the risk of over-interpretation when dealing with

atomic models built from low-resolution diffraction images,

the authors believe that efforts can and should be taken to

obtain critical biological information from the available data.

With this idea in mind, we propose a general workflow that

integrates the different strategies used during the current

project (Fig. 6). Alternative experimental approaches may

also be considered depending on the complex under study. For

example, when recombinant production is possible, systematic

SeMet labelling of specific residues can assist in chain tracing

(Oubridge et al., 2009). Distance restraints such as those
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obtained from cross-linking coupled to mass spectrometry

(Rappsilber, 2011) can be useful during the initial steps of

model building. Finally, available EM reconstructions may

prove useful at different stages of the X-ray structure-

determination process. Successful examples of such combined

approaches include the use of EM maps for molecular repla-

cement, heavy-atom location and phase extension (Ban et al.,

1998; Xiong, 2008). We hope that our work will inspire other

scientists that endeavour the difficult task of analysing large

macromolecular assemblies through X-ray crystallography.
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Figure 6
Workflow for PolI structre determination. The different stages, main steps and possible alternatives in decision making are shown.
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Fernández-Tornero, C., Rybin, V., Gavin, A. C., Kolb, P. & Müller,
C. W. (2013). J. Biol. Chem. 288, 15110–15120.

Terwilliger, T. C. (2004). Acta Cryst. D60, 2144–2149.
Terwilliger, T. C. & Berendzen, J. (1999). Acta Cryst. D55, 849–861.
Vassylyev, D. G., Vassylyeva, M. N., Perederina, A., Tahirov, T. H. &
Artsimovitch, I. (2007). Nature (London), 448, 157–162.

Warner, J. R. (1999). Trends Biochem. Sci. 24, 437–440.
Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242.
Wojtas, M. N., Mogni, M., Millet, O., Bell, S. D. & Abrescia, N. G.
(2012). Nucleic Acids Res. 40, 9941–9952.

Wong, W., Bai, X.-C., Brown, A., Fernandez, I. S., Hanssen, E.,
Condron, M., Tan, Y. H., Baum, J. & Scheres, S. H. W. (2014). Elife,
2014, e03080.

Xiong, Y. (2008). Acta Cryst. D64, 76–82.

research papers

2582 Moreno-Morcillo et al. � Solving the RNA polymerase I structural puzzle Acta Cryst. (2014). D70, 2570–2582

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5059&bbid=BB58

